Ministry of Transportation

Ontario Reduced Load Period (RLP) Determination of Onset and Removal Dates

Stephen Lee, P. Eng. Head, Pavements Section Engineering Materials Office, Standards and Contracts Branch

September 16, 2022

Alain Beaulieu, P. Eng. Director, Standards and Contracts Branch Transportation Infrastructure Management Division Ministry of Transportation

Jurisdictional Scan: RLP Practices

Establish Ontario RLP zones

Method for Ontario RLP Start and End Date Model

Ontario RLP Model and Excel solution

Next Steps

Jurisdictional Scan Surrounding Agencies RLP Practices

MTO and Surrounding Agencies: RLP Current Practices

Current RLP Practices: Zones and Advance Notice to the Industry

Agencies	Zone	Advance Notice to the Industry					
<mark>Ontario</mark> (МТО)	Current: 3 Schedule List NW, NE and Southern Ontario	Fixed dates 511 website					
Minnesota (MnDOT)	6 RLP Zones	At least 3 days					
Quebec (МТQ)	3 RLP Zones	At least one week					
Manitoba (MB Transportation and Infrastructure)	4 RLP Zones	3 days					

CTI algorithms for setting RLP Start and End Dates

What is CTI?	 Cumulative Thawing Index (CTI) is the cumulative number of degree-days when air temperatures are above 0 °C 				
CTI Equations	 Different agencies using <u>Different CTI Equation</u> to calculate CTI, but they all use the same <u>Input Parameters</u> 				
Input parameters	 Daily Air Temperature T_{Air} (measured and/or forecast) Reference Temperatures T_{Ref} (lookup table, values set by agency) 				
Benefits of CTI method	 Simple, only requires Daily Air and pre-set Reference Temperatures CTI algorithm is applicable for large geographical zone and can be customized for municipalities using local input data CTI algorithm has 7 days advance forecast capability of RLP onset and removal dates to facilitate timely notice and administration of RLP. 				

Current Jurisdictional Practices: SLP Start and End Date

Agencies	Start RLP	End RLP
<mark>Ontario</mark> (МТО)	 Freeze/thaw depth at SLA stations Use CTI thresholds in NW and NE Observation, historical date, temperature in Southern Ontario 	 NE and NW CTI predictions, southern Ontario Fixed dates or site temperature and site observations Approx. 5 to 10.6 weeks from the start of RLP
Minnesota (MnDOT)	 Use CTI threshold Forecast of warmer temperature 	 Complete thaw plus 3 weeks Site Observations Not longer than 8 weeks from start of RLP
Quebec (МТQ)	 30% of stations in the zone reaching 30 cm thawing depth 	 50% of stations in the zone has reached 90 cm thaw, plus 5 weeks
Manitoba (MB Transportation and Infrastructure)	 Use CTI threshold and temperature continue to rise Cannot be earlier than specific start date of the zone 	 Use CTI threshold and temperature continue to rise Not later than specified end date Approx. 12 to 13 weeks from start of RLP

Ontario Reduced Load Period (RLP) Zones

Ontario RLP Zone Development

Factors for Ontario RLP Zone Determination:

- Vast geographical and climatic zones
- MTO PGAC Zone experience
- Pavement and Foundation Degree Freezing Index Days/Frost Depth Penetration data
- Dominant subgrade soils in Ontario
- Road Weather Information station (RWIS) and Seasonal Load Adjustment (SLA) Stations locations and coverage.
- Selection of SLA sites for zones calibration and verification using air temperature parameter.

Factors considered for Ontario RLP Zones

PGAC Zones

Average SLA Temperature Plots for each zone: Average Daily Air Temperatures (2022)

Ontario RLP Zones with selective SLA Sites

Ontario RLP Start and End Dates Model

Ministry of Transportation Ontario 😵 13

CTI Equations Reviewed:

4 CTI Equations were assessed in the analysis

- MTO (NER)
- MTO (NWR)
- MnDOT
- Manitoba

Sample of CTI Equation and Input Parameters are Air Temperature and Reference Temperature

$$Cum.TI = \sum_{i=1}^{n} [TI_d - (0.5 \times FI_d)]$$
When $T_{AIR} - T_{REF} > 0^{\circ}C$,
 $TI_d = (T_{AIR} - T_{REF}) \text{ and } FI_d = 0^{\circ}C \cdot day$
When $T_{AIR} - T_{REF} < 0^{\circ}C$,
 $TI_d = 0^{\circ}C \cdot day \text{ and } FI_d = [0^{\circ}C - T_{AIR}]$

Selection of RLP Start Date and End Date - Model and Criteria

RLP shall start

- on or earlier than the date that pavement strength starts decreasing (i.e., strength decreasing)
- Pavement starts weakening when:
 - ✓ thaw depth reaches the base granular layer
 - ✓ Increasing moisture in base granular layer
- ✤ RLP to start when any one of these conditions is met
- The RLP Start Date determine the CTI threshold value and model/algorithm that consistently predict the date when one or both of these strength weaking conditions are met with verification using moisture probe, FWD test and frost probe data

RLP shall end

- on or later than the date that pavement strength achieved pre thaw strength (i.e., strength recovering)
- Pavement starts strength recovery when:
 - ✓ Resilient modulus of base granular and/or subgrade increased to or above level before thaw weakening
 - ✓ Base layer moisture decreasing
- Reduced Load Period to end at a date when these conditions are met
- The RLP End Date determine the CTI threshold criteria and model/algorithm that consistently predict the date when all these strength recovery conditions are met with verification by moisture probe, FWD test and frost probe data

Data Collection 2022

15 SLA stations in 4 zones

RWIS Data

•Collect and extract air and subsurface temperatures, subsurface moisture content, and frost depth to determine thaw/frost front and draining conditions

Borehole Data

Collect borehole data to assess pavement structure (type and thickness) and subgrade information for use with FWD analysis and modules back calculation

FWD Testing Results

Perform Falling Weight Deflectometer (FWD) testing at various times around complete thaw period to determine pavement and subgrade strength recovery

RWIS Data (Example Zone 1 - Hwy 527)

- Air Temperature: Measured data interval at every 1 hour or every 10 minutes (site dependent)
- Subsurface Temperature: Typical 13 sensors below surface at depth between 5 cm to 255 cm (site dependent)
- Moisture Contents: Typical 3 moisture sensor below surface at depth 15, 45, and 100 cm (site dependent)

		Subsurface Temperature (°C)											Subsurface Water Content (%)				
Time EDT	Air Temp (°C)	5 cm	15 cm	30 cm	45 cm	60 cm	75 cm	90 cm	105 cm	135 cm	165 cm	195 cm	225 cm	255 cm	15 cm	45 cm	100 cm
03/18/2022 0:00	-2.5	-1.9	6.2	-4.1	-5.8	-6.6	-6.4	-6.1	-4.6	-4.2	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 1:00	-3.9	-2.1	6.2	-4.1	-5.8	-6.6	-6.4	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 2:00	-5.5	-2.3	6.2	-4.1	-5.7	-6.6	-6.3	-6	-4.6	-4.2	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 3:00	-6.2	-2.6	6.1	-4	-5.7	-6.6	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 4:00	-7.3	-2.8	6.1	-4	-5.6	-6.6	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 5:00	-8.2	-3.1	6	-4	-5.6	-6.5	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 6:00	-9.3	-3.4	5.9	-4	-5.6	-6.5	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 7:00	-9.8	-3.8	5.8	-4	-5.5	-6.5	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 8:00	-10.8	-4.2	5.7	-4	-5.5	-6.5	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 9:00	-10.3	-4.5	5.5	-4	-5.5	-6.4	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 10:00	-6.1	-4.8	5.4	-4	-5.4	-6.4	-6.3	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 11:00	1.2	-4.9	5.2	-4	-5.4	-6.4	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 12:00	2.8	-4.6	5.1	-4.1	-5.4	-6.4	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 13:00	5.8	-3.8	5.1	-4.1	-5.4	-6.3	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 14:00	7.2	-2.4	5.2	-4.2	-5.4	-6.3	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 15:00	7.1	-1	5.4	-4.2	-5.4	-6.3	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 16:00	7.5	0.3	5.6	-4.3	-5.3	-6.3	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 17:00	7.7	1.5	6	-4.3	-5.3	-6.3	-6.2	-6	-4.6	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 18:00	7.2	2.2	6.5	-4.3	-5.3	-6.2	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 19:00	6.6	2.2	6.9	-4.2	-5.3	-6.2	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 20:00	2.6	1.6	7.1	-4.2	-5.3	-6.2	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 21:00	-1.5	0.7	7.2	-4	-5.3	-6.2	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 22:00	0.6	-0.1	7.1	-3.8	-5.3	-6.1	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8
03/18/2022 23:00	-3.3	-0.7	7	-3.6	-5.2	-6.1	-6.1	-5.9	-4.5	-4.1	-3.1	-2.2	0.6	3.1	11	8	8

Zone: WR-5 Ostrander (2022 Data) Top-down and bottom-up thawing in Ontario Surficial freeze thaw cycles - 3 consecutive days above thaw check

2003																						
			_					20	22										-			
	-	SLR	Data					45	1 00	45		New le	p Probe:	s 405	40.5	405	0.00	055	-			
				<u>ها</u>			->	-15	-30	-45	-0	-30	-105	-135	-165	-195	-225	-255		Moister	Moister	Hoistare
Date	Т.	т				Place	5 cm	Sabcar	Sabcar	sah car	Sabcar	Sakaar	Salesarf	135 cm	Sab car	Sabcarf	Saboard	Salesar		+ (2)	+ (2)	(2) VCF
Date	•	• 4	TI.	FL	СТІ	Place	Subsurfa	aubsur	audsur	audsur	audsur	audsur	audsurr	Subsurfa	audsur	audsurr	audsurr	audsur				A 100
						SLR:	ce Temp	Time	T D	Time	Time	Time	T	ce Temp	Time	ace T	T	Time	Date	15 cm	45.00	- 100
2/4/2022	-10.50	-150	0.00	10.50	0	No	-4.2	-17	.17	-18	-0.7	-0.2	0.2	15	27	3.8	5.0	6.3	2/4/2022	3.6	28	3.0
2/4/2022	-10.50	-150	0.00	10.50	- ů	No	-4.2	.00		-19	-0.1	-0.2	0.2	1.0	2.1	3.8	4.9	6.0	0/5/0000	4.0	3.0	3.0
2/6/2022	-6.75	-150	0.00	6.75	- ů	No	-4.6	-31	-31	-25	-0.6	-0.1	0.2	14	2.6	37	4.8	61	2/6/2022	4.0	3.0	3.0
2/7/2022	-6.05	-150	0.00	6.05	ŏ	No	-3.3	-3.1	-3.1	-2.7	-0.8	-0.2	0.2	14	2.5	3.6	4.7	6.0	2/7/2022	7.3	3.0	3.0
2/8/2022	-5.10	-2.00	0.00	5.10	0	No	-2.5	-2.6	-2.6	-2.4	-0.8	-0.2	0.2	1.4	2.5	3.6	4.6	5.9	2/8/2022	4.2	3.0	3.0
2/9/2022	-2.90	-2.00	0.00	2.90	0	No	-2.1	-2.3	-2.3	-2.2	-0.7	-0.2	0.2	1.3	2.4	3.5	4.6	5.8	2/9/2022	9.3	3.3	3.0
2/10/2022	-2.75	-2.00	0.00	2.75	0	No	-0.8	-1.3	-1.9	-2.0	-0.6	-0.2	0.2	1.3	2.4	3.4	4.5	5.7	2/10/2022	8.4	3.1	3.0
2/11/2022	0.10	-2.00	2.10	0.00	2	No	-0.3	-1.5	-1.5	-1.8	-0.6	-0.1	0.2	1.3	2.4	3.4	4.4	5.7	2/11/2022	3.9	3.1	3.0
2/12/2022	-5.25	-2.00	0.00	5.25	0	No	-0.8	-1.3	-1.3	-1.6	-0.6	-0.1	0.2	1.3	2.3	3.3	4.4	5.6	2/12/2022	6.8	3.2	3.0
2/13/2022	-6.65	-2.00	0.00	6.65	0	No	-2.8	-1.2	-1.2	-1.4	-0.5	-0.1	0.2	1.3	2.3	3.3	4.3	5.5	2/13/2022	4.8	3.6	3.5
2/14/2022	-12.50	-2.00	0.00	12.50	0	No	-4.7	-1.6	-1.6	-1.4	-0.5	-0.1	0.2	1.3	2.3	3.3	4.3	5.5	2/14/2022	4.0	4.0	4.0
2/15/2022	-8.55	-2.50	0.00	8.55	0	No	-4.5	-2.4	-2.4	-1.7	-0.4	-0.1	0.2	1.2	2.2	3.2	4.2	5.4	2/15/2022	4.0	4.0	4.0
2/16/2022	-2.75	-2.50	0.00	2.75	0	No	-1.3	-2.3	-2.3	-2.0	-0.4	-0.1	0.2	1.2	2.2	3.2	4.2	5.4	2/16/2022	4.5	4.0	4.0
2/17/2022	0.70	-2.50	3.20	0.00	3	No	0.4	-1.7	-1.7	-1.8	-0.4	-0.1	0.2	1.3	2.2	3.2	4.1	5.3	2/17/2022	9.6	4.0	4.0
2/18/2022	-0.05	-2.50	2.45	0.00	6	No	-1.4	-1.2	-1.2	-1.6	-0.4	0.0	0.3	1.2	2.2	3.1	4.1	5.2	2/18/2022	8.1	3.9	4.0
2/19/2022	-7.50	-2.50	0.00	7.50	0	No	-2.5	THE		1.4	-0.4	0.0			22	TRia	4.8	5.2	2/19/2022	5.5	3.8	4.0
2/20/2022	-3.45	-2.50	0.00	3.45	0	No	-2.7	U.	1 10 (J VV I	d1			D PL		30	VV.II	S 5.1	2/20/2022	4.8	4.0	4.0
2/21/2022	-1.10	-2.50	1.40	0.00	1	No	-0.5	-1.2	-1.2	-1.2	-0.3	0.0	0.3	1.2	2.2	3.1	4.0	5.1	2/21/2022	7.7	4.0	4.0
2/22/2022	4.60	-3.00	7.60	0.00	3	No	1.1	-1.0	-1.0	-1.2	-0.3	0.0	0.3	1.2	2.1	3.0	4.0	5.1	2/22/2022	11.9	4.0	4.0
2/23/2022	-0.35	-3.00	2.05	0.00	11	No	0.2	-0.5	-0.5	-1.1	-0.4	-0.1	0.3	1.3	2.1	3.0	3.8	5.0	2/23/2022	1.9	5.0	4.8
2/24/2022	-1.50	-3.00	0.00	1.50	0	No.	-2.4	-0.5	-0.5	-0.3	-0.3	0.0	0.3	1.2	2.1	3.0	3.3	5.0	2/24/2022	2.1	5.0	4.5
2/202/2022	-0.10	-3.00	0.00	7.70		No	-2.2	-0.1	-0.1	-0.0	-0.2	0.1	0.5	13	21	3.0	3.8	4.0	22021(212	4.4	4.1	4.0
2/20/2022	-6.10	-3.00	0.00	6.10		No	-0.0	-13	-13	-0.0	0.0	0.2	0.4	13	21	2.0	3.8	4.0	2/20/2022	4.1	4.0	4.0
2/28/2022	-4.85	-3.00	0.00	4.85	ŏ	No	-2.5	-1.5	-1.5	-1.2	0.0	0.4	0.5	1.3	2.1	2.9	3.8	4.8	2/28/2022	5.0	4.0	4.0
3/1/2022	-0.90	-3.50	2.60	0.00	3	No	-1.0	-1.4	-1.4	-1.2	0.0	0.4	0.6	1.3	2.1	2.9	3.7	4.8	3/1/2022	5.6	4.0	4.0
3/2/2022	-0.90	-3.50	2.60	0.00	5	No	-0.4	-1.2	-1.2	-1.2	0.1	0.4	0.6	1.4	2.1	2.9	3.7	4.8	3/2/2022	6.9	4.0	4.0
3/3/2022	-3.95	-3.50	0.00	3.95	0	No	-1.4	-1.0	-1.0	-1.1	0.1	0.4	0.6	1.4	2.1	2.9	3.7	4.7	3/3/2022	7.5	4.1	4.0
3/4/2022	-5.55	-3.50	0.00	5.55	0	No	-2.1	-1.0	-1.0	-1.1	0.1	0.4	0.6	1.4	2.1	2.9	3.7	4.7	3/4/2022	5.1	4.1	4.0
3/5/2022	-2.55	-3.50	0.95	0.00	1	No	-0.6	-1.0	-1.0	-1.0	0.1	0.5	0.7	1.4	2.1	2.9	3.7	4.7	3/5/2022	5.5	4.0	4.0
3/6/2022	4.95	-3.50	8.45	0.00	9	No	5.1	-0.7	-0.7	-1.0	0.1	0.5	0.7	1.4	2.1	2.9	3.7	4.7	3/6/2022	7.7	4.7	4.0
3/7/2022	6.30	-3.50	9.80	0.00	19	Yes	1.0	0.0	0.0	-0.8	0.1	0.5	0.7	1.4	2.1	2.9	3.7	4.6	3/7/2022	6.8	5.5	4.0
3/8/2022	-1.30	-4.00	2.70	0.00	22	Yes	1.0	0.0	0.0	-0.5	0.3	0.6	0.7	1.4	2.1	2.8	3.6	4.6	3/8/2022	6.0	4.7	4.2
3/9/2022	0.05	-4.00	4.05	0.00	26	Yes	1.6	0.3	0.3	-0.1	0.5	0.8	0.8	1.4	2.1	2.8	3.6	4.6	3/9/2022	5.8	4.0	4.0
3/10/2022	0.15	-4.00	4.15	0.00	30	No	2.3	0.9	0.9	0.4	0.8	1.0	1.0	1.5	2.1	2.8	3.6	4.5	3/10/2022	5.8	4.0	4.0
3/11/2022	-0.25	-4.00	3.6	0.00	34	No	0.3	0.9	0.9	0.7	1.2	1.2	1.2	1.6	2.2	2.9	3.5	4.5	3/11/2022	8.2	3.9	4.0
3/12/2022	-4.30	-4.00	0.00	4.30	0	No No	-1.2	0.3	0.3	0.4	1.3	1.4	1.4	1.0	2.3	2.3	3.5	4.5	3/12/2022	6.3	3.1	4.1
3/13/2022	-0.55	-4.00	2.05	0.00	0	No	-0.0	-0.5	-0.5	-0.1	0.9	1.4	1.4	1.0	2.0	2.3	3.5	4.5	3/13/2022	0.1	3.0	4.0
011412022	-0.35	-4.00	3.05	0.00		1 140	0.1	-0.5	-0.0	-0.0	0.3	1.6	1.0	1.0	2.4	3.0	3.0	4.5	011412022	0.0	2.0	4.0
										八												
			($\underline{\vee}$								$\underline{\mathbf{V}}$	
Со	mpu	tatior	n of [·]	T _{Air}	FI, T	1	S	Subsurface Temperature Reading and Color									Mo	oistu	re			
				AII												0						
		and	CTI					Cor	10 fr	or Fr	-007	ing	Th:	nivie		mn	arati	Iro		D	coho	c
		anu	CII					COL			CEZ	mg/	1110		5 10	mpe	Jaco	JIE			Obe	3

Frost Depth	105 cm
Thaw to 5 cm	March 6
Thaw to 30 cm	March 7
Thaw to 90 cm	March 10
Complete Thaw *Refreeze	March 10

Borehole Data: Pavement Structure and Subgrade Information

RLP Zone	SLA Station	HMA (mm)	Surface Treated (mm)	Granular Base (mm)	SSM (mm)	HMA (mm)	SSM (mm)	Granular Subbase (mm)	Total Thickness (mm)	Subgrade Types
	Hwy 527	60	()	200	()	()	()	740	1000	Sand with Silt and Gravel
	Hwy 599		25	300					325	Sand with Gravel/ Gravelly Sand
1	Hwy 601		25	200				375	600	Silty Clay & Sand/Clay with Sand
	Hwy 643	45		150				305	500	Gravelly Sand/Sand with Gravel
	Hwy 671		20	200					220	Silty Sand/Sand and Silt
	Hwy 66	230						200	430	Other + CL
2	Hwy 569		25	230	355	50			660	CL-ML, CL
Z	Hwy 624		25	230		50	455		760	SM
	Hwy 651	50						865	915	Encounter BR or Boulders
	ER-2 Ashton	250		180				260	690	Grey Sa tr Gr and Br Sa
3	ER-30 Denbigh	90		190				250	530	Br Sa
	NR-47 Muskoka Falls	140			240	50		1370	1800	SM
4	ER-39 Bloomfield	110		300				500	910	Br Si Sa
	WR-5 Ostrander	325		175				> 1400	1900	Not Encountered within 2 m
	WR-13 Mount Forest	265		185				750	1200	Silty Sand

FWD Testing Results (Example Zone 1 - Hwy 527)

- FWD Testing Date: Typical 4 testing dates after complete thaw period (site dependent)
- Pavement Strength Recovering Indicator: Deflection decrease and Modulus increase
- Primary pavement strength weakening, and gain is in granular layers during spring thaw

Method to determine RLP Start Date Select Best-Fit CTI Threshold and Algorithm

- Select the closest subsurface temperature sensor to the base layer and find the first date that sensor's average daily temperature is >= 0 °C for 3 consecutive days to indicate onset of pavement weakening
- Find the daily maximum and minimum air temperature to calculate the daily CTI using different CTI Equations (Ontario NW & NE, MnDOT and Manitoba)
- Identify the corresponding CTI with the date for start of pavement weakening for each SLA station
- Analyze all CTIs for each zone and determine the initial CTI Start Date Threshold for each RLP zone
- Compare if the predicted RLP start date using Start Date CTI Threshold for the zone is on, earlier than, later than the actual date of pavement thaw weakening start date for each SLA site using 2022 and 2021 (Zone 1 and Zone 2 only)
- Compare results from all CTI Equations

- Review the results of predicted and actual date of strength weakening
- Recommend the RLP Start Date CTI Threshold and best fit algorithm for each RLP zone

Data

Analyze

Determine

RLP Start Date Analysis: Results and Recommendations

Results:

- RLP Start Date CTI thresholds are established for all RLP zones using different CTI Equations
 - MTO (NER), MTO (NWR), MnDOT, and Manitoba
- The selected thresholds predict the RLP start date very closely to the actual thaw weakening start date (i.e., on or later than actual)
- ✤ All CTI equations predicted the same RLP start date
- * Except Zone 4, MTO (NWR) CTI Equation predicts start date much earlier for Zone 4
- * In terms of the complexity among all CTI Equations, Manitoba's CTI Equation is relatively simpler

Recommendations:

- Use the following for <u>Ontario RLP Start Date</u>
 - ✓ Calibrated Manitoba CTI Algorithm
 - ✓ RLP Start Date CTI Thresholds: 8 °C-Day for all Zones

Method to determine RLP End Date - CTI Threshold and Best Fit Algorithm

RLP End Date Analysis: Results and Recommendations

Results:

- RLP End Date CTI thresholds are established for all RLP zones using calibrated Manitoba CTI Equation with borehole, FWD and SLA station data
- All predicted RLP end dates are:
 - Later than complete pavement structure thaw date
 - Pavement strength recovery increase to or above pre-initial thaw level
 - Pavement granular/subgrade with decreasing moisture trend
- On average, the selected best fit calibrated algorithm and threshold model predicted RLP End Date is slightly later than Manitoba and Minnesota CTI models but earlier than Quebec.

Recommendations:

- Analysis of selective SLA sites within each zone using calibrated Manitoba algorithm with the following Ontario RLP End Date thresholds:
 - RLP End Date CTI Thresholds: Zone 1: 700 °C-Day**
 Zone 2: 700 °C-Day
 Zone 3: 560 °C-Day
 Zone 4: 290 °C-Day

**Zone 1 – Existing SLA sites are all in lower part of Zone 1. Additional 2 SLA sites near middle of the zone recommended for 2023.

Recommended Ontario RLP Algorithm and Start and Removal Threshold Values

Ministry of Transportation
Ontario 8 28

Recommended Ontario RLP Algorithms and Threshold values

Cumulative Thawing Index (CTI) Equation

Set $CTI = 0^{\circ}C$ -day on February 1 of each year, calculate the CTI on February 2 of each year as follow:

$$\begin{split} CTI_{i} &= TI_{i-1} + TI_{i} \\ Reset \ CTI \ to \ 0^{\circ}C \ day \qquad when \ CTI < 0^{\circ}C \ day \\ TI &= (0.5 \times T_{Air}) + T_{Ref} \qquad when \ T_{Air} < 0^{\circ}C \\ TI &= T_{Air} + T_{Ref} \qquad when \ T_{Air} \ge 0^{\circ}C \\ \hline T_{Air} &= \frac{T_{Max} + T_{Min}}{2} \\ T_{Ref} &= 0.06^{\circ}C \ on \ February \ 1 \ and \ increase \ by \ 0.06^{\circ}C \ daily \ until \ May \ 31 \end{split}$$

Recommended Start RLP when 3 consecutive days of CTI is greater than CTI threshold. Remove RLP when CTI threshold exceeded

Use 7 days forecast air

temperatures to predict

CTI seven days ahead

 $T_{Ref} = 0^{o}C from June 1 to January 31$

 $T_{Max} = Maximun Daily Air Temperature in Degree Celcius$

 $T_{Min} = Minimum Daily Air Temperature in Degree Celcius$

CTI Thresholds	RLP Zones									
for	1	2	3	4						
Start Date	8 °C-day	8 °C-day	8 °C-day	8 °C-day						
End Date	700 °C-day	700 °C-day	560 °C-day	290 °C-day						
* An aveal and	and chaot to	alaulata tha	CTI	wailabla						

*An excel spreadsheet to calculate the CTI will be available

Recommended RLP Models for Municipalities

MTO RLP

OGRA/Municipalities -Site-specific RLP

•Municipalities as supported by OGRA use closest RWIS/air temperature data as input into the corresponding zone CTI Excel Calculator

Use ongoing and 7 days in advance temperatures to predict onset and removal of RLP dates using the CTI Excel Calculator to provide advance notice to industry

RLP Start Date

• Determine using CTI Excel Calculator using zone or local data

RLP Removal Date

 Determine using CTI Excel Calculator with the different CTI threshold values (290°Cdays to 700°C days) for the zones with SLA or local RWIS data

Excel CTI Zone Calculator

	PLD Zono /	Enter RLP Year:	2022
	RLP ZONE 4	Start	End
	CTI Threshold	8	290
	Zone Specific	6-Mar-2022	24-Apr-2022
	Site Specific	Start	End
1	SLA ER-39 Bloomfield	7-Mar-2022	20-Apr-2022
2	SLA WR-5 Ostrander	6-Mar-2022	15-Apr-2022
3	SLA WR-13 Mount Forest	7-Mar-2022	24-Apr-2022
4			
5			
6			
7			
8			

	Site S	opecific	Table:	1									
	Enter Site/I	Hwy/Ro	oad ID:		SLA ER-39 Bloomfield								
	Enter G	PS Coord	linates:		43.988056, -77.250556								
	Data	Daily	Air Tempe	eratures	Reference	Calculated	Calculated Cumulative	> CTI Start Date Threshold for	> CTI End Date Threshold for				
Dav	Date	Enter Measured or		Calculated	Temperature	Index	Thawing	3 consecutive days	1 day				
,		Fore	ecast				index	on	on				
	Always	Max	Min	Mean	Tref	TI	СТІ	7-Mar-2022	20-Apr-2022				
	Day 0 = Feb 1	(°C)	(°C)	(°C)	(°C)	(°C)	(°C-Day)	7-10101-2022	20-401-2022				
0	1-Feb-2022	2	-14	-5.8	0.06	-2.8	0.0	No	No				
27	28-Feb-2022	0	-16	-7.9	1.68	-2.2	0.0	No	No				
28	1-Mar-2022	3	-16	-6.5	1.74	-1.5	0.0	No	No				
29	2-Mar-2022	3	-8	-2.4	1.80	0.6	0.6	No	No				
30	3-Mar-2022	1	-14	-6.4	1.86	-1.3	0.0	No	No				
31	4-Mar-2022	-1	-18	-9.4	1.92	-2.8	0.0	No	No				
32	5-Mar-2022	5	-18	-6.6	1.98	-1.3	0.0	No	No				
33	6-Mar-2022	15	-7	4.1	2.04	6.1	6.1	No	No				
34	7-Mar-2022	15	-1	7.0	2.10	9.1	15.2	Yes	No				
35	8-Mar-2022	3	-3	0.0	2.16	2.2	17.4	Yes	No				
36	9-Mar-2022	3	-3	-0.4	2.22	2.0	19.4	Yes	No				
37	10-Mar-2022	3	-3	0.1	2.28	2.3	21.7	Yes	No				
								Untariu	21				

Next Steps

2023-2024

Additional year of data to refine the algorithms and threshold values used in the models, if applicable. Additional 2 SLA in NW Ontario to provide better coverage of Zone 1. Technical knowledge transfer and training sessions for OGRA and municipalities

> Supplementary information from HIIFP study to be completed in 2024/25. Further yearly data to refine the RLP algorithms and threshold values as required.

2024-2025

Summary

Determined RLP zones for use in Ontario

Perform jurisdictional scan of other agencies. Using 2021 and 2022 SLA, RWIS, borehole and FWD determine RLP model and threshold values for zones Calibrate and validate start and removal RLP dates model for the 4 zones. Develop Excel solution for RLP period determination. Ongoing Technical transfer.

Analyze PGAC zones, frost depth, base layer moisture, soils, air and subsurface temperature, pavement strength recovery data Develop CTI prediction model for Start and Removal of RLP for the 4 Ontario zones using local air temperature and future forecast data

Calibration and validation CTI model for each zone using 2021 and 2022 SLA, RWIS, borehole and FWD data Determine CTI threshold for start and removal of RLP. Develop Excel solution for the 4 zones Ministry of Transportation Standards and Contracts Branch

Thank You!

Stephen Lee., M.Eng., P.Eng.

Head, Pavements Section Room 316, 3/F, 95 Arrow Road Toronto, Ontario M9M 2L4 <u>Stephen.Lee@Ontario.ca</u> 416.235.3732

Pavements Section Engineering Materials Office