

Welcome to the 65th MEA Conference

Shelley Hazen, Climate Change Specialist – GEI Consultants Canada

November 12th, 2025

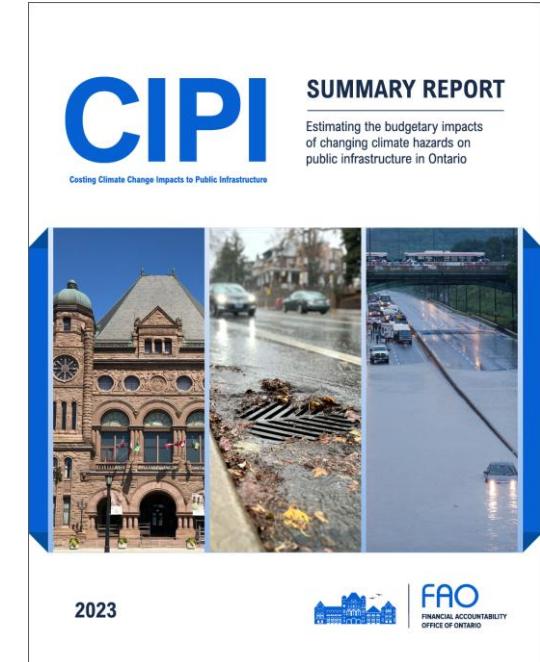
london.ca

GEI

MUNICIPAL
ENGINEERS
ASSOCIATION

Building Sustainable Infrastructure Through Climate Informed Asset Management

Capital Programming Stream



Budgetary Impacts of Climate Change on Public Infrastructure

"The FAO projects that in the absence of adaptation, changing climate hazards will add \$4.1B/yr on average to the cost of maintaining the \$708 billion portfolio of existing public infrastructure in a medium emissions scenario. This represents a 16% increase.."

Ontario's 444 municipalities own 71% (\$506 billion) of the public infrastructure portfolio in the CIPI project's scope.

Implications for Public Infrastructure

- Climate hazards are accelerating asset deterioration
- Need for more frequent rehabilitations
- Earlier renewals
- Spending for more operations and maintenance (O&M) activities

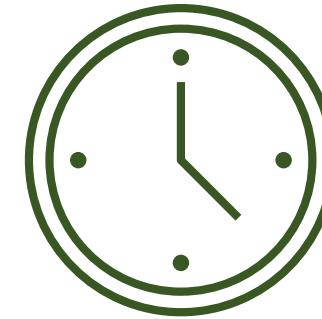
- Overflows
- Road closures
- Increased cooling demand
- Water supply shortages
- Pavement softening
- Frozen pipes
- Pavement cracking
- Salt corrosion
- Power outages
- Roof damage
- Debris blocking SWM

O.Reg 588/17 - Climate Change Requirements

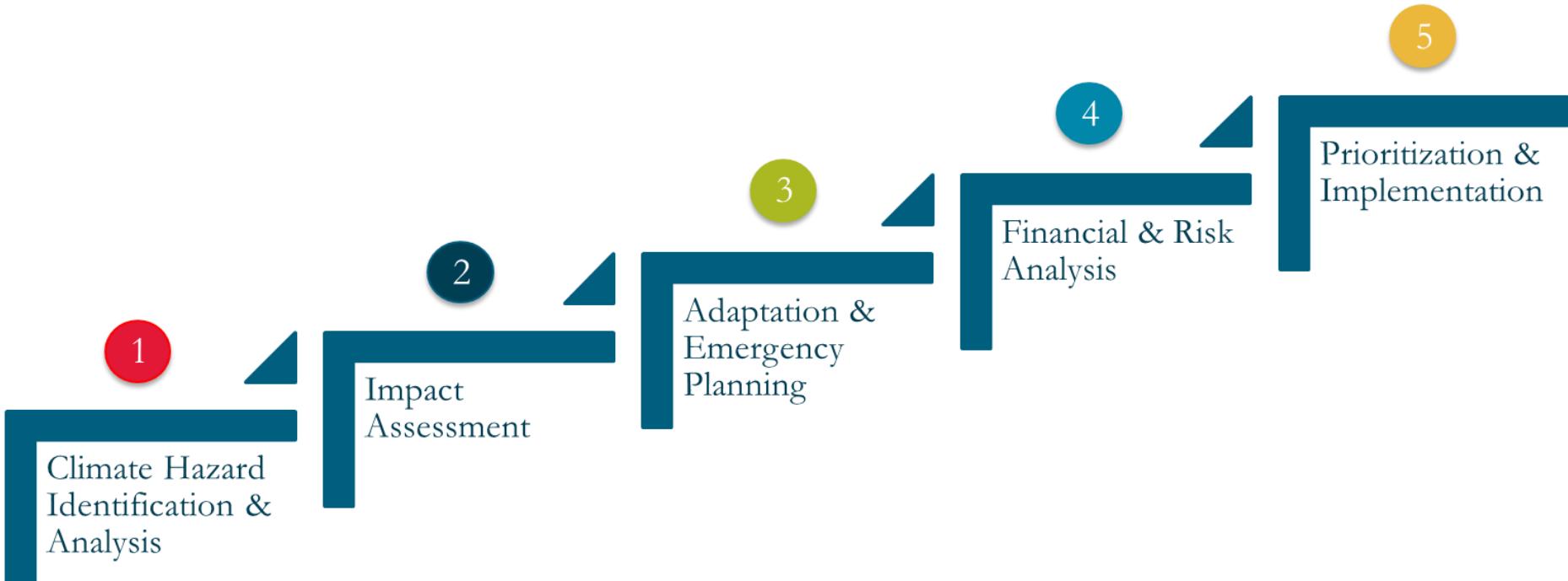
Section 3(1) 5, the Strategic Asset Management Policy States:

5. The municipality's commitment to **consider** as part of its asset management planning,
 - i. the actions that may be required to address the vulnerabilities that may be caused by climate change to the municipality's infrastructure assets, in respect of such matters as,
 - A. operations, such as increased maintenance schedules,
 - B. levels of service, and
 - C. lifecycle management,
 - ii. the anticipated costs that could arise from the vulnerabilities described in subparagraph i,
 - iii. adaptation opportunities that may be undertaken to manage the vulnerabilities described in subparagraph i,
 - iv. mitigation approaches to climate change, such as greenhouse gas emission reduction goals and targets, and
 - v. disaster planning and contingency funding.

Client Request


How do we really understand the cost of climate change on our infrastructure?

Cost of Climate
Impacts on
Infrastructure


Cost of Adaptation
Options

Implementation
Options

Climate-Informed Asset Management Framework

Climate Hazard Identification & Analysis

1

Climate Hazard Identification & Analysis

Objective: Understand current and future climate risks affecting infrastructure

- Use local climate projections (e.g., extreme rainfall, heatwaves, drought, freeze-thaw)
- Analyze hazard likelihood and intensity for different future time periods (2050s & 2080s).
- Apply multi-model datasets to capture full range of risk scenarios (mid and high emission scenarios)

Impact Assessment

2

Impact Assessment

Objective: Assess how climate-related events impact assets

- Evaluate how identified hazards affect asset lifecycle and performance
- Assess potential service level disruptions and condition deterioration
- Identify vulnerabilities across asset classes (e.g., roads, water, facilities)
- Establish baseline for climate sensitivity of infrastructure systems

Adaptation & Emergency Planning

3

Adaptation & Emergency Planning

Objective: Plan for resilience and response

- Assign appropriate adaptation strategies (e.g., upgrades, design changes)
- Develop or refine emergency response procedures where adaptation isn't feasible
- Integrate climate considerations into maintenance planning
- Ensure continuity of service and community safety under stress scenarios

Financial & Risk Analysis

Objective: Model costs and benefits of action vs inaction

- Quantify long-term asset performance under future climates
- Calculate avoided costs from adaptation vs. the status quo
- Evaluate financial risks, service disruption costs, and risk reduction benefits
- Use decision-support modeling tools (DSS) to guide planning

Prioritization & Implementation

5

Prioritization & Implementation

Objective: Drive climate-smart investment decisions

- Prioritize adaptation actions based on risk reduction and cost-effectiveness
- Align strategies with enterprise asset management systems
- Integrate into long-range capital planning and budget cycles
- Advance projects that optimize lifecycle costs and community resilience

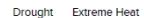
What Does This Framework Look like in Action?

Climate Hazard Identification

No.	Climate Change Hazard ¹	Occurring ...	Climate Parameter(s) and Threshold(s) (Climate Change Event) ¹	Trend	Historical (1981-2010)			2030s Timeline (2011-2040)			2050s Timeline (2041-2070)			2080s Timeline (2071-2100)		
					Annual Occurrence (events/yr) ³	Probability of Occurrence in One Year	Return Period (Historically) ⁴	Annual Occurrence (events/yr)	Probability of Occurrence in One Year	Return Period (Early Century)	Annual Occurrence (events/yr)	Probability of Occurrence in One Year	Return Period (Mid-Century)	Annual Occurrence (events/yr)	Probability of Occurrence in One Year	Return Period (End of Century)
1	Extreme Rain	Annual	10-year return period (55 mm over 6 hour time period)	↑	0.100 events/yr	10%	10 year event	0.129 events/yr	13%	8 year event	0.155 events/yr	15%	6 year event	0.194 events/yr	19%	5 year event
2	Extreme Rain	Annual	25-year return period (65 mm over 6 hour time period)	↑	0.040 events/yr	4%	25 year event	0.052 events/yr	5%	19 year event	0.072 events/yr	7%	14 year event	0.092 events/yr	9%	11 year event
3	Extreme Rain	Annual	50-year return period (73 mm over 6 hour time period)	↑	0.020 events/yr	2%	50 year event	0.022 events/yr	2%	45 year event	0.035 events/yr	4%	28 year event	0.046 events/yr	5%	22 year event
4	Extreme Rain	Annual	1 in 100-year return period event (80 mm over 6 hour time period)	→	0.010 events/yr	1%	100 year event	0.011 events/yr	1%	123 year event	0.015 events/yr	2%	66 year event	0.020 events/yr	2%	49 year event
5	Drought	Annual	14 consecutive days where precipitation is 0mm	↑	1.248 events/yr	100%	0.84 year event	1.155 events/yr	100%	0.87 year event	1.334 events/yr	100%	0.74 year event	1.552 events/yr	100%	0.65 year event
6	Freezing Rain	Winter (DJFM)	Days where precipitation over 55mm and max temp <0C	→	0.002 events/yr	0.2%	480 year event	0.002 events/yr	0.2%	480 year event	0.002 events/yr	0.2%	480 year event	0.004 events/yr	0.40%	240 year event
7	Rain on Snow	Winter (DJFM)	Number of days with a maximum daily temperature above 0°C and a minimum temperature below 0°C, and precipitation is 20mm or more	→	0.995 events/yr	97%	1.03 year event	1.113 events/yr	100%	0.92 year event	1.029 events/yr	100%	1.01 year event	0.911 events/yr	91%	1.13 year event
8	Freeze-thaw	Annual	Number of days with a maximum daily temperature above 0°C and a minimum temperature below 0°C	↓	78.832 events/yr	100%	0.01 year event	75.929 events/yr	100%	0.01 year event	67.292 events/yr	100%	0.02 year event	57.140 events/yr	100%	0.02 year event
9	Extreme Heat	Summer (JJA)	Days where maximum air temperature is more 32°C	↑	3.870 events/yr	100%	0.36 year event	10.003 events/yr	100%	0.11 year event	22.516 events/yr	100%	0.05 year event	44.323 events/yr	100%	0.02 year event
10	Extreme Heat	Summer (JJA)	Days where maximum air temperature is more 40°C	↑	0.566 events/yr	57%	1.77 year event	0.671 events/yr	67%	1.49 year event	0.805 events/yr	81%	1.24 year event	1.084 events/yr	100%	0.92 year event
11	Extreme Heat - Heat Wave	Annual	3 consecutive days >32 °C during the day and Tropical Nights (Days with Tmax > 32C; Days with Tmin >22 °C during the night)	↑	0.030 events/yr	<1%	>250 year event	0.204 events/yr	4%	23.12 year event	2.053 events/yr	100%	0.86 year event	9.560 events/yr	100%	0.14 year event
12	High Winds ²	Annual	Wind gusts exceed 63km/hr	→	12.3 events/yr	100%	0.08 year event	12.3 events/yr	100%	0.08 year event	12.3 events/yr	100%	0.08 year event	13.5 events/yr	100%	0.07 year event
13	Lake Levels ²	Annual	Water levels exceed height of Peel's lowest outfall at 75.21 m IGLD	↑	1.0 event/yr	In the past 10 years, it was exceeded in: 2011, 2015, 2017, 2018, 2019	1 year event	2.1 events/yr	100%	0.5 year event	3.7 events/yr	100%	0.3 year event	10.6 events/yr	100%	0.09 year event

Documenting Climate Impacts

2


Extreme Heat & Drought

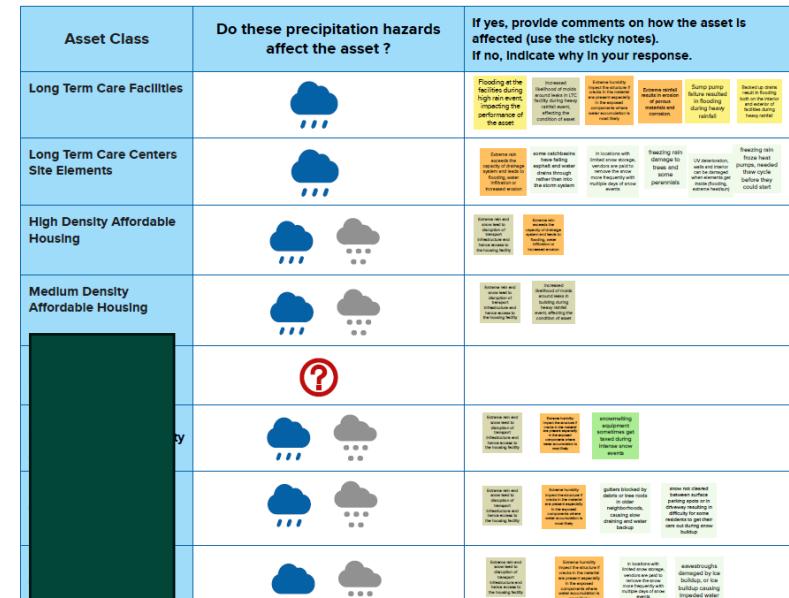
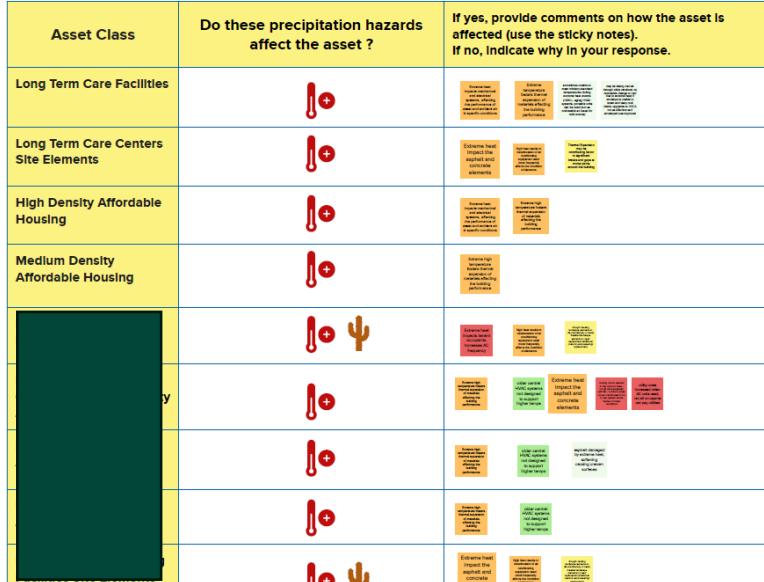
Use the sticky notes to comment, provide context or add ideas related to how precipitation affects the condition, management or service delivery related to assets shown.

⌚ 10 minutes

A question mark indicates there is a gap in published data as to whether the hazard affects the asset.

Icons Indicate published data
Indicates the hazard may affect
the asset.
Do you agree? Why or why not?

1



Precipitation (Extreme Rainfall; Snow)

Use the sticky notes to comment, provide context or add ideas related to how precipitation affects the condition, management or service delivery related to assets shown

⌚ 20 minutes

A question mark indicates there is a gap in published data as to whether the hazard affects the asset.

Adaptation Options & ERPs

Options: **Grey, Green, Blue, Hybrid**

Roof

- Green roof
- Blue roof
- Upsizing downspouts/drainage

Road

- Heat resilient road mix
- Permeable mixes

Parking lot

- Sunshades
- Solar panel shades

Quantifying Climate Change

Two Streams of Assessment:

Service Life Reduction (Baseline Stream)

- Estimate how climate change reduces estimated service life (ESL) of assets.
- Increased reinvestment needs as assets require more replacements.

Adapted Asset Replacement (Adaptation Stream)

- Estimate the cost of upgrading to adapted assets (e.g., blue or green roofs).
- Compare cost and benefit of investing in climate-adapted infrastructure.
- This stream supports cost-benefit comparisons and prioritization of adaptation investments.

Example

Service Life Reduction (Baseline Stream)

- Estimate how climate change reduces estimated service life (ESL) of assets.
- Increased reinvestment needs as assets require more replacements.

Status Quo

ESL: 25 years, \$5M

Spend over 100 years= \$20M

With Climate Impacts

Reduced ESL 20 years, \$5M

Spend over 100 years=\$25M

Cost of Climate Change= \$5M

Case Study – Scenario Modelling

Adapted Asset Replacement (Adaptation Stream)

- Estimate the cost of upgrading to adapted assets (e.g., blue or green roofs).
- Compare cost and benefit of investing in climate-adapted infrastructure.
- This stream supports cost-benefit comparisons and prioritization of adaptation investments.

Extreme Rain

IMPACT:

Water pooling on roofs causing leaks & damage.

Adaptation Strategy 1

Install smart blue roof system

Adaptation Cost= \$365/m²

Adapted Asset Lifecycle= 1.5*current lifecycle

Adaptation Strategy 2

Install green roof system

Adaptation Cost= \$460/m²

Adapted Asset Lifecycle= 2*current lifecycle

Additional Modeling Inputs

- Incorporating climate risk and dollar/risk reduction
- % of assets expected to not meet LoS (didn't assume every hazard meant the failure of all assets)

Prioritization

Cost

Compare of the cost of different adaptation strategies

Dollar Risk Reduction

Understand where adaptation gives the biggest return on risk reduction

Geospatial Mapping

Visually map facilities against climate hazards

Climate-Informed Asset Management Framework

Thank You

Questions?

Shelley Hazen

Climate Change Specialist/Practice Lead

shazen@geiconsultants.com

